联合学习可以使许多应用程序受益于大量潜在数据持有客户的分布式和私人数据集。但是,不同客户通常就可以从数据中学到的任务具有自己的特定目标。因此,使用元学习工具(例如多任务学习和转移学习)来支持联合学习,将通过让不同但相关任务的客户共享可以进一步更新和更新和相关任务的客户来帮助扩大联合学习的潜在应用程序。由每个客户为其特定任务量身定制。在联合的多任务学习问题中,应对每个客户的各个目标进行训练的深度神经网络模型,同时共享一些参数以提高概括性。我们建议训练一个深层的神经网络模型,其更广泛的层更接近输入,并且更具个性化的层贴在输出中。我们通过引入层类型(例如预训练,常见,特定于任务和个人层)来实现这一目标。我们提供仿真结果,以突出特定的方案,在这种情况下,基于元学习的联合学习被证明是有用的。
translated by 谷歌翻译
这项研究采用无限脉冲响应(IIR)图神经网络(GNN),有效地对智能网格数据的固有图形网络结构进行建模,以解决网络攻击本地化问题。首先,我们通过数值分析有限脉冲响应(FIR)和IIR图过滤器(GFS)的经验频率响应,以近似理想的光谱响应。我们表明,对于相同的滤波器顺序,IIR GF可以更好地近似所需的光谱响应,并且由于其合理类型的滤镜响应,它们也与较低阶GF的近似值相同。其次,我们提出了一个IIR GNN模型,以有效预测总线上的网络攻击的存在。最后,我们在样本(SW)和BUS(BW)水平的各种网络攻击下评估了模型,并将结果与​​现有架构进行比较。经过实验验证的是,所提出的模型的表现分别优于最先进的FIR GNN模型,分别在SW和BW定位方面分别优于9.2%和14%。
translated by 谷歌翻译
本文建议使用通信管道来提高移动边缘计算应用程序中联合学习的无线频谱利用效率和收敛速度。由于无线子渠道有限,在联合学习算法的每次迭代中,总计客户端的一部分。另一方面,计划的客户等待最慢的客户端完成计算。我们建议首先根据客户在计算联合学习模型的本地梯度所需的时间将客户聚集。然后,我们安排了来自所有群集的客户的混合,以管道的方式发送其本地更新。这样,更多的客户可以参与每次迭代,而不仅仅是等待较慢的客户完成计算的速度。虽然单个迭代的持续时间没有改变,但提出的方法可以显着减少达到目标准确性所需的迭代次数。我们为在不同的设置下提供了最佳客户群聚类的通用公式,并在分析上得出了一种有效的算法来获得最佳解决方案。我们还提供了数值结果,以证明针对不同数据集和深度学习体系结构所提出的方法的收益。
translated by 谷歌翻译
作为一种高度复杂和集成的网络物理系统,现代电网暴露于网络攻击。假数据注入攻击(FDIAS),具体地,通过针对测量数据的完整性来表示对智能电网的主要类别威胁。虽然已经提出了各种解决方案来检测那些网络攻击,但绝大多数作品忽略了电网测量的固有图结构,并仅验证了其检测器,仅针对小于几百辆公共汽车的小型测试系统。为了更好地利用智能电网测量的空间相关性,本文提出了使用Chebyshev Graph卷积网络(CGCN)的大规模交流电网中的网络内人检测深度学习模型。通过降低光谱滤波器的复杂性并使它们本地化,CGCN提供了一种快速高效的卷积操作,以模拟图形结构智能电网数据。我们在数值上验证所提出的CGCN的探测器在7.86以7.86以7.67以带有2848辆总线的大型电网的误报率的7.86以7.86的误报。所值得注意的是,所提出的方法检测为2848辆总线系统的4毫秒下的网络攻击,这使其成为大型系统中的网络内攻击的良好候选者。
translated by 谷歌翻译